
Implementing a Physician's Workstation using Client/Server
Technology and the Distributed Computing Environment

Thuan Q. Pham, M.S.1, Charles Y Young, Ph.D.', Paul C. Tanl, M.D.2,
Henri J. Suermondt, Ph.D.', Jurgen Annevelink, Ph.D.

'Hewlett-Packard Laboratories, Palo Alto, CA
2Northwestern Memorial Hospital, Chicago, IL

Abstract

PWS is a physician's workstation research prototype
developed to explore the use ofinformation
management tools by physicians in the context of
patient care. The original prototype was implemented
in a client/server architecture using a broadcast
message server As we expanded the scope ofthe
prototyping activities, we identified the limitations of
the broadcast message server in the areas of
scalability, security, and interoperability. To address
these issues, we reimplemented PWS using the Open
Software Foundation's Distributed Computing
Environment (DCE). We describe the rationalefor
using DCE, the migration process, and the benefits
achieved. Future work and recommendations are
discussed.

INTRODUCTION

The objective of the Physician's Workstation (PWS)
project [1] is to investigate and develop a comprehen-
sive and highly integrated set of information manage-
ment tools for use by physicians in ambulatory care.
We successfully developed and deployed an experi-
mental prototype using an open systems architecture
[2] based on HP's broadcast message server (BMS)
[3]. Although the prototype works well in the context
of a small work group, it has several limitations due to
the characteristics of the BMS framework: scalability
is limited due to the narrow bandwidth of the BMS;
security is limited; and interoperability is limited to
only a few hardware platforms. To overcome these
limitations, we redesigned and reimplemented PWS's
distributed computing framework using the Distrib-
uted Computing Environment (DCE) [4] from the
Open Software Foundation (OSF).

This paper describes the design and implementation
of the new PWS prototype. In particular, we illustrate
our leveraging of DCE's technologies and services to
make PWS a more scalable, secure, robust, and open
distributed application.

In the following sections, we first describe the origi-
nal architecture of PWS and discuss its limitations

with respect to scalability, security, and interoperabil-
ity. We then present the new client/server architecture
and DCE-based implementation which overcome
those limitations. Finally, we conclude with a vision
of future work with regard to the emerging distributed
computing technologies.

BACKGROUND: ORIGINAL PWS
ARCHITECTURE

The original PWS architecture, illustrated in Figure 1,
uses a message server as a backbone for both commu-
nication and data integration. The strength of this
architecture is that, using the simple string-based mes-
sage protocol, new applications could be developed
independently and integrated easily into the PWS
environment. As a result, the original prototype
achieved the desirable openness and integration
among application components.

Broadcast Message Server

Figure 1: Original architecture ofPWS that relies on
BMSfor communication and integration.

However, the architecture's total dependence on the
broadcast message server has some undesirable con-
sequences. Due to the limited capabilities of the BMS,
the prototype lacked the scalability, security, and
hardware interoperability needed for robust distrib-
uted applications. We address these issues in the fol-
lowing subsections.

Scalablity
The scalability limitation of the original prototype is a
result of the total reliance on the BMS as an all-
purpose software bus for sending both control
messages and large chunks of patient data among
applications. All software components of PWS are

0195-4210/94/$5.00 © 1994 AMIA, Inc. 626

dependent on one message server for all message
distribution and data exchange. As more and more
applications or sessions come on-line, the message
server quickly becomes the bottleneck that degrades
performance.

Security
The BMS environment does not provide any security
services. Without a security service, an application
cannot verify the identity or trust the intention of
other applications. There is no provision in the BMS
environment to prevent unauthorized users from
receiving data that are placed on the bus, since anyone
can subscribe to, receive, and monitor any and all bus
traffic.

Furthermore, BMS messages are broadcast in plain
text. Data encryption is needed, but it requires a secu-
rity service component to authenticate and/or broker
the encryption keys. Although it could be possible to
implement a BMS-based security service, such effort
would require a significant amount of work and would
likely result in a non-standard implementation.

Interoperability
Currently, all PWS applications run on one hardware
platform. To deploy the system on a much larger
scale, PWS components will have to operate on a
variety of hardware platforms, many of which may
not support BMS.

NEW PWS ARCHITECTURE
Applications in the BMS environment can take on a
client or server role in their behavior, but strictly
speaking, these applications are peers that
communicate by broadcasting on the BMS. From our
experience in using PWS, we observe that most
messages are one-to-one communications or data
exchanges between two components. A more
effective architecture would allow application
components to communicate directly with each other,
while using the message server to broadcast important
events and shared information.
Thus, the fundamental goals of our new PWS
architecture are to: use client/server technology to
facilitate the direct communication between program
components, use the event service mechanism for
global control and event notification, and leverage
DCE services to make PWS a robust, scalable, and
secure distributed application.

What is DCE?

Developed by the Open Software Foundation (OSF),
DCE is a framework and environment for building
distributed applications in a heterogeneous computing
environment. DCE provides both a development and a
runtime environment for distributed applications. This
includes the interface definition language (IDL) and
compiler, remote procedure calls (RPC) [5,6], threads,
directory and security services, distributed file system
(DFS), distributed time service (DTS), and an
application programming interface (API).

Why DCE?

The move to DCE enables us to leverage its distrib-
uted computing services and infrastructure to build
robust distributed applications. For example, DCE's
IDL allows us to define the interface between client
and server applications; RPC makes a remote server's
service appears like a local procedure call, greatly
simplify networking; directory, timing, and security
services are essential to any distributed system; and
the emerging DCE standard and compliance ensure
interoperability across many hardware platforms,
ranging from workstations to personal computers.

PWS Client/Server Architecture

Figure 2 illustrates the new architecture of PWS, in
which each application is either a client, a server, or
both (since a server application can be a client of
another). The interactions between programs are
mostly in the form of a client invoking a service of a
remote server using an RPC.

Figure 2: DCE-based client/server architecture ofPWS

With RPC facilitating the direct data exchange
between client and server applications, the event
service is used effectively to handle control messages,
such as broadcasting shared states and event
notifications. For example, when a user logs in to
PWS, the Login application creates a database session

627

server, and broadcasts the server's full path name in
the DCE environment to all interested application
components. Using this name, applications can go to
the DCE's cell directory service (CDS) to find and
establish their own direct connections to the server.
With a much lighter work load, the event service now
has sufficient processing capacity to handle many
more processes.

IMPLEMENTATION

Interface Definition
The first step in our implementation was to identify
operations to be supported by server applications.
From these, we defined the server interface using the
IDL. The IDL compiler then generated the stub code
for client and server modules. These stubs, when
linked into the respective programs, enabled server
and client applications to communicate with each
other using the defined interface and RPC.

Server Implementation
To implement the server applications, we first
implemented the server functionality as defined in the
interface. Then, we wrote the server initialization and
clean up routines so that the servers properly
registered and unregistered themselves with DCE
directory service. In addition, we set up an exception
handling mechanism in each server so that it could
remove itself from the DCE environment should an
exception occur.

Client Implementation
The step that required the most work in our port of
PWS onto DCE was the implementation of client
programs. There are many applications in the PWS
prototype, and each application communicates with
many others. For each client application, we replaced
an asynchronous, interrupt-driven program logic with
a simpler synchronous, procedural program logic,
using RPC.
In other words, to obtain information in the original
architecture, each client application asynchronously
posted one or more messages to the message server.
When some other component provided an answer, the
client application received the message from the
message server, matched it with the originating
request, and called some predefined functions to
process the result. In the new architecture, most
communications are point-to-point between the client
and server components, in the form of (synchronous)
remote procedure calls. With RPC, the results are

available immediately when the call completes,
removing the complexity of matching results with
requests in the asynchronous mode of
communication.
In addition, we enhanced our client applications by
using multiple threads to implement parallel control.
The use of threads in conjunction with RPC is
significant because threads allow client applications
to execute many RPC calls independently and
concurrently. Hence, if an RPC call running in one
client application thread is waiting for a server to
produce the result, other threads in the client
application can still proceed with their execution.
Furthermore, by dispatching threads to carry out a
user's requests, the main application thread is always
under the user's control, thereby increasing the
application's responsiveness.
For example, two of the most lengthy operations in
PWS are the queries of a patient's detailed history of
problems and medications, which involve the
database server. When the provider first selects a
patient to review, the display application must fetch
patient information from the database while
performing other tasks. To improve performance, we
devised two job queue data structures, DxQueue and
RxQueue, and assigned each queue to be processed by
a thread. When the display application needs to fetch
a patient's drug information or diagnosis, it simply
places the query statements in the respective queue,
and continues to handle more user requests.
Meanwhile, for each query placed in the queue, the
thread managing the job queue makes an RPC to get
the results from the database.

Encapsulation of Non-DCE Components
In a new system, there may be a need to integrate
legacy components. For this, DCE servers can be used
to interface DCE components with non-DCE
components. For example, the DCE/DB interface
component in Figure 3 is actually a DCE server
process that handles requests for data from a non-
DCE database.

Figure 3: interfacing with non-DCE components

628

In our current implementation, we use a DCE server
process as an interface to an object oriented database.
When the DCE/DB interface server receives an RPC
requesting information from a client, it queries the
database. The query results are then returned to the
calling process via an RPC return argument. Interface
components such as this enables the integration and
continued support of legacy systems.

DISCUSSION
The benefits of our migration to DCE are numerous.
First of all, the new prototype is more scalable and
robust. By allowing application programs to interact
with one another directly, we removed the bottleneck
from the broadcast message architecture. By using
RPC to transmit data between client and servers, we
achieved better efficiency and data privacy. By using
the DCE directory service and RPC facility, we
allowed client applications to interact with server
applications without having to know their dynamic
physical location in a distributed environment, and
without having to handle the complex networking
details. With DCE's RPC and services, accessing a
server process running across the country was no
more difficult than accessing one running on a local
machine.
Furthermore, once ported, PWS applications
immediately benefited from the security mechanism
provided by DCE. These benefits include
authentication, access control, and encryption.
The move to DCE also presented some challenges.
First and foremost, the DCE environment requires
system administration skills much like that of a Unix
workstation (e.g., add new user account and security
credential, setup user profile, etc.). The current lack of
DCE system administration tools continues to make
this task tedious and laborious.
In addition, DCE server processes are usually several
megabytes in size and require much computing
resources to run with adequate performance. In every
DCE environment, there is an overhead of computing
resources to run the essential DCE services such as
security service, directory service, distributed time
service, and various other essential DCE daemons.
DCE is a large and complex system. The DCE's
architecture, facilities, capabilities, and application
programming interface (which includes over several
hundred functions) required some time to master.
To port an existing application to DCE, a change in
the program's design is sometimes necessary. This is
particularly true for applications that use
asynchronous communication. Although RPC

alleviates the problem of matching replies with
requests, it is a synchronous communication protocol.
Used serially, RPC takes away the program's ability
to perform other work while the request is being
processed by some server. This is unnecessarily
restrictive and inefficient. Thus, to use RPC and still
preserve the efficiency of asynchronous programs, we
needed to redesign programs to use a combination of
threads and RPC. In effect, we had to write
multithreaded programs.

Lastly, although DCE is being accepted by more and
more companies as the platform to implement open,
distributed heterogeneous computing [7], its
technology is still young. Early commercial
implementations ofDCE may still be a bit unstable
and inefficient.

FUTURE EXTENSIONS

During the development of this PWS prototype, we
identified a number of potential areas for further
investigation.

Reduced Development Cost

Although building a robust DCE application is a com-
plex job, the task is highly repetitive, and template
driven. For example, a DCE server basically needs
some initialization routines, clean-up routines, excep-
tion handling threads, and access control mechanism.
After developing the first robust server, the task of
implementing the basic structure of additional servers
became routine.

OODCE [8], a C++ class library that encapsulates
many DCE facilities, has been developed. This library
offers much promise in reducing development cost
and time. For example, an OODCE's server class
object includes a full implementation of an exception
handler, an access control list (ACL) manager, and
some value-added facilities such as an object factory
and activation mechanism. We would like to employ
OODCE to help improve any future development.

Improved Fault-tolerance

As the system scales up to handle more and more
processes, the reliance on a single message server
creates a single point of failure. To address this, we
can replace the message server with a hierarchy of
DCE-based event services, which can be replicated to
improve fault tolerance. Furthermore, such a DCE-
based event service mechanism can interoperate with
client programs from all DCE environments, making
the system even more open.

629

Object Interoperablity
The objects and distributed computing community is
currently proposing a distributed object model that
provides interoperability between different software
platforms. For example, with such a model, an object
in a Smalltalk application can interact with another
object in a C++ application.

Specifically, the object model being adopted by the
industry is the Common Object Request Broker
Architecture (CORBA) [9,10] by the Object Manage-
ment Group (OMG). To this extent, we ported a data-
base interface component from DCE IDL to
CORBAL IDL, and ported an application component,
the drug formulation browser, of PWS to access the
drug formulation server using the CORBA model.
This work begins to establish a migration path from
DCE to CORBA should we need to migrate in the
future.

SUMMARY

We started this paper with a description of the original
PWS architecture which relied on the asynchronous,
broadcast message server as an integration framework
for both interprocess communication and data
exchange. In the discussion, we enumerated the archi-
tectural limitations that were learned through our use
of PWS.

To overcome the limitations of the original architec-
ture, we presented a new PWS design. The new archi-
tecture combines an efficient mix of synchronous,
point-to-point client/server communication for data
exchange, and asynchronous, broadcast messaging for
event notification and operational synchronization. By
using each communication model for its strength, the
new PWS prototype is more efficient and scalable.

The scalability, security, and interoperability of a dis-
tributed application depend not only on the architec-
ture, but also on the framework on which it is
implemented. Using DCE, the new PWS prototype is
able to leverage the distributed system technologies
and services to achieve these properties.

ACKNOWLEDGMENTS

We would like to thank our colleagues Mike Higgins,
Mark Gisi, Danielle Fafchamps, Phil Strong, Philippe
De Smedt, and the reviewers for their insightful com-
ments on previous drafts of this paper.

References

[1] P.C. Tang, J. Annevelink, D. Fafchamps, W.M.
Stanton, and C.Y Young. Physician's Workstations:
Integrated Information Management for Clinicians.
In: P. Clayton, ed., Proceedings of the Fifteenth
Annual Symposium on Computer Applications in
Medical Care. McGraw-Hill, New York, 1991, pp.
569-573.

[2] C.Y. Young, P.C. Tang, and J. Annevelink. An
Open Systems Architecture for Development of a
Physician's Workstation. In: P. Clayton, ed., Proceed-
ings of the Fifteenth Annual Symposium on Com-
puter Applications in Medical Care. McGraw-Hill,
New York, 1991, pp. 491-495.

[3] M. Cagan. The HP Softbench'Environment: an
Architecture for a New Generation of Software Tools.
Hewlett-Packard Journal, June 1990, pp. 36-47.

[4] OSF DCE Application Development Reference,
Open Software Foundation, Revision 1.0, Prentice-
Hall, Englewood Cliffs, New Jersey, 1993.

[5] B.J. Nelson. Remote Procedure Call. Technical
Report CSL-81-9, Xerox Palo Also Research Center,
1981.

[6] A. Birrell and B.J. Nelson. Implementing Remote
Procedure Calls. Technical Report CSL-83-7, Xerox
Palo Also Research Center, 1983.

[7] Mary Hubley. Achieving Interoperability. Datapro
Information Services Group. CW Custom Publica-
tions, Framingham, MA, 1994.

[8] John Dilley. Object-Oriented Distributed Comput-
ing with C++ and OSF DCE. International Workshop
in DCE, October, 1993.

[9] Object Management Group. Common Object
Request Broker Architecture and Specification. Docu-
ment Number 91.12.1, Revision 1.1, 1991.

[10] Digital Equipment Corporation, Hewlett-Packard
Company, Hyperdesk Corporation, International
Business Machines Corporation, NEC Corporation,
and Open Software foundation. Joint Submission on
Interoperability and Initialization. OMG TC Docu-
ment 94-3-5, March, 1994.

'630

